
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 685
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

COMPARATIVE ANALYSIS OF LINEAR PROBING, QUADRATIC PROBING
AND DOUBLE HASHING TECHNIQUES FOR RESOLVING COLLUSION IN

A HASH TABLE
Saifullahi Aminu Bello1 Ahmed Mukhtar Liman2 Abubakar Sulaiman Gezawa3 Abdurra’uf Garba4 Abubakar Ado5

Abstract— Hash tables are very common data structures. They provide efficient key based operations to insert and search for data in
containers. Like many other things in Computer Science, there are tradeoffs associated to the use of hash tables. They are not good
choices when there is a need for sort and select operations. There are two main issues regarding the implementation of hash based
containers: the hash function and the collision resolution mechanism. The hash function is responsible for the arithmetic operation that
transforms a particular key into a particular table address. The collision resolution mechanism is responsible for dealing with keys that hash
to the same address. In this research paper ways by which collision is resolved are implemented, comparison between them is made and
conditions under which one techniques may be preferable than others are outlined.

Index Terms— Double hashing, hash function , hash table, linear probing , load factor, open addressing, quadratic probing,

—————————— ——————————

1 INTRODUCTION
HE two main methods of collision resolution in hash ta-
bles are are chaining (close addressing) and open address-
ing. The three main techniques under open addressing are

linear probing, quadratic probing and double hashing. This
research work consider the open addressing technique of colli-
sion resolution, namely, Linear probing, Quadratic probing
and double Hashing. The algorithms were implemented in
c++, and sample data was applied. Comparison of their per-
formance is made.

1.1 Hash Function: a hash function is any well-defined proce-
dure or mathematical function that converts a large, possibly
variable-sized amount of data into a small datum, usually a
single integer that may serve as an index to an array [1]. The
values returned by a hash function are called hash values,
hash codes, hash sums, or simply hashes.
A good hash function should

• be simple/fast to compute
• map equal elements to the same index
• map different elements to different indexes
• have keys distributed evenly among indexes

There are many types of hash functions, for the purpose of this
research, division method is used. . In this method the re-
turned integer, x is to be divided by M, the size of the table.
The reminder, which must be between 0 and M-1, will be use
to specify the position of x in the table.
h(x) = x mod M

1.2 Load factor: is the ratio n/m between n, number of entries
and m the size of its bucket array. As we shall see later in this
research work, with a good hash function, the average lookup

cost is nearly constant as the load factor increases from 0 up to
0.7 or so. Beyond that point, the probability of collisions and
the cost of handling them increases.

1.3Linear probing: when collusion occurs, the table is search
sequentially for an empty slot. This is accomplished using two
values - one as a starting value and one as an interval between
successive values in modular arithmetic. The second value,
which is the same for all keys and known as the stepsize, is
repeatedly added to the starting value until a free space is
found, or the entire table is traversed.
The algorithm for this technique is
newLocation = (startingValue + stepSize) % arraySize
the stepsize takes the following value: 1, 2, 3, 4,….
Given an ordinary hash function H(x), a linear probing func-
tion would be:

1.4 Quadratic Probing:
Quadratic probing operates by taking the original hash value
and adding successive values of an arbitrary quadratic poly-
nomial to the starting value. The idea here is to skip regions in
the table with possible clusters. It uses the hash function of the
form:

H(k, i) = (h`(k) + i2) mod m for i = 0, 1, 2, . . . , m-1

1.5 Double hashing: uses the idea of applying a second hash
function h`(key) to the key when a collision occurs.
The result of the second hash function will be the number of
positions from the point of collision to insert.
There are some requirements for the second function:

- it must never evaluate to zero
- must make sure that all cells can be probed

The probing sequence is then computed as follows
Hi(x)=(h(x)+ih`(x)) mod m

Where h(x) is the original function, h`(x) the second function, i
the number of collisions and m the table size.
So the table is searched as follows

T

————————————————
• Saifullahi Aminu Bello is working with Kano University of Science and

Technolgy, Nigeria. And is currently pursuing masters degree program in
computer science and technology in Liaoning University of Technology,
China. E-mail: saifullahiabel@yahoo.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 686
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

H0=(h(x)+0*h`(x)) mod m
H1=(h(x)+1*h`(x)) mod m
H2=(h(x)+2*h`(x)) mod m

And so on.

2 EXPERIMENT AND ANALYSIS
To compare the performance of the open addressing tech-
niques, we considered inserting student’s registration num-
bers(an alphanumeric data type) in a hash table implemented
using c++ programming language, to monitor the perfor-
mance of the techniques as shown in the table below. We took
note of the number of probes needed to resolve the collision
occurred each time an insertion was made.

Table 1: result of number of probes by each algorithm on a
sample data
REGISTRATION
NUMBER

Linear prob-
ing
(probes)

Quadratic
probing
(probes)

Double
hashing
(probes)

KUST/SCI/05/356 0 0 0
KUST/SCI/05/214 4 2 2
KUST/SCI/05/117 0 0 0
KUST/SCI/05/714 0 0 0
KUST/SCI/05/735 1 1 3
KUST/SCI/05/821 0 0 0
KUST/SCI/05/434 2 3 0
KUST/SCI/05/578 1 1 0

As the number of probes indicates the number of collisions,
from the above table, linear probing has the highest number of
probes followed by quadratic probing. Double hashing has the
least number of probes hence minimum collisions. So, double
hashing is the most efficient followed by quadratic probing.

2.1 ALGORITHM COMPARISONS
How could we qualify one algorithm is better than another?
Primary concern could be the growth of runtime as input set
becomes larger. The runtime can be dependent on compari-
sons made, number of statements executed and varying im-
plementations on different machines.
Some programs or algorithms perform just fine with a small
set of data to be processed. But they may perform very poorly
with a large data set. It’s useful to understand which programs
and algorithms might exhibit this behavior and avoid poten-
tial problems. Here we are focusing on the rate of growth of
required computations as the quantity of data grows.
Hash function is expected to be independent of the size of the
table, but as collision is inevitable, that property is rarely
achieved. As we have seen, the efficiency of linear probing
reduces drastically as the collision increases. Because of the
problem of primary clustering, clearly, there are tradeoffs be-
tween memory efficiency and speed of access.
 Quadratic probing reduces the effect of clustering, but intro-
duces another problem of secondary clustering. While prima-
ry and secondary clustering affects the efficiency of linear and
quadratic probing, clustering is completely avoided with dou-

ble hashing. This makes double hashing most efficient as far as
clustering is concerned.
Since all the techniques are dependent on the number of items
in the table, then they are indirectly dependent on the load
factor. If load factor exceeds 0.7 threshold, table's speed drasti-
cally degrades. Indeed, length of probe sequence is propor-
tional to (load Factor) / (1 – load Factor) value (D.G Bruno,
1999).

Quadratic probing tends to be more efficient than linear prob-
ing if the number of items to be inserted is not greater than the
half of the array, because it eliminates clustering problem.

Based on the above analyses, the following table is deduced
Table 2: Summary of the algorithms performance
PROBING SE-
QUENCE

PRIMARY CLUS-
TERING

CAPACITY
LIMIT

SIZE RES

Linear probing Yes None None

Quadratic prob-
ing

No λ< M must b

Double hashing No None M must b

At best case, each of the technique works at O(1). But this is
only achieved when there is no collision. But as collision oc-
curs, linear probing tends to be less efficient so is quadratic
probing and double hashing.

3 CONCLUSION
Hashing is a search method used when sorting is not needed
and when access time is of essence.Though Hashing is an effi-
cient method of searching and insertion, there is always time-
space trade off. When memory is not limited, a key can be
used as a memory address, in that case, access time will be
reduced. And when there is no time limitation, we can use
sequential search, so there is no need of using a key as a
memory address, thus, memory is minimized.
Hashing – gives a balance between these two extremes – a way
to use a reasonable amount of both memory and time.The
choice of a hash function depends on:
1. The nature of keys and the
2. The distribution of the numbers corresponding to the

keys.
Best course of action:
3. separate chaining: if the number of records is not

known in advance
4. open addressing: if the number of the records can be

predicted and there is enough memory available
From what we have seen in this research work, load factor of
open addressing is always less than or equals to 1. To achieve
efficient insertion and searching the load factor should be less
than 0.75 for linear probing and double hashing, and must be
less than or equals 0.5 for quadratic probing.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 687
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Double hashing is the most efficient collision technique, when
the size of the table is prime number and it avoids clustering.
Quadratic probing is also efficient but only when the records
to be stored are not greater than the half of the table. It has
problem of secondary clustering where two keys with the
same hash value probes the same position. Linear probing is
easier to implement and work with, but its efficiency tends to
reduce drastically as the number of records approaches the
size of the array.

REFERENCES
[1] D.G BRUNO, (1999); “DATA STRUCTURES AND ALGORITHM

WITH OBJECT ORIENTED DESIGN IN C++” (1* Ed). Addison Wes-
ley Publishing Company-America. PP. 225-248.

[2] JOHN R. HUBBARD, (2000); “DATA STRUCTURES WITH C++” (1*
Ed). McGraw-Hill Companies -New York. PP. 161-165.

[3] HERBERT SCHILDT(1998); “C++:THE COMPLETE REFERENCE”(3*
Ed). McGraw-Hill Companies-Berkeley. PP. 833-841.

[4] Tenenbaum, Aaron M.; Langsam, Yedidyah; Augenstein, Moshe J.
(1990), Data Structures Using C, Prentice Hall, pp. 456–461, pp.
472, ISBN 0-13-199746-7

[5] TCSS 342 Lecture Notes, 2005. University of Washington

[6] http://en.wikipedia.org/wiki/Open_addressing

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-199746-7

	1 Introduction
	3 CONCLUSION
	References

